AssociationsMarket ResearchName TestSynapse Mapping

How to Extract Key Consumer Insights from Open Text Answers

By 16. August 2016 July 3rd, 2019 One Comment

Did you ever want to hear your consumers’ real voice by including more open questions in a market research study?

Well, a powerful solution for you is using synapse maps. Let’s face it, we all know that market research studies often use “open-ended” items, allowing for a greater variety of responses in order to gain new insights (e.g. “what will this product do to your skin?”) when compared to closed, predefined questions. However, even though marketers may love to hear from thousands of people, it is often hard to extract meaningful insights from such large datasets.

An example of typical survey procedure

In this article, we’re going to focus on open-ended questions and how to extract consumer insights by understanding how memory and associations shape the way consumers evaluate any marketing material that is presented.

Although open-ended questions are difficult to analyze, they do offer many benefits, including:

  • high information density
  • honest, unexpected responses from participants
  • answers can include feelings, attitudes and understanding

The Challenge:

Regardless of the fact that many benefits to using open-ended questions, several pitfalls exist. For example, traditional methods focus on coding parts of participants’ answers according to categories relevant to the study. Even though coding is a valid form of text analysis, such a study is naturally costlier, especially in terms of time and effort. Also, the insights gathered from such an approach are likely to be biased since they partly depend on the interpretation of the person responsible for coding the responses.


However, NEURO FLASH2‘s Synapse Map© technology addresses these shortcomings by quantifying consumer’s’ opinion, wants and needs, by using natural language processing (NLP). Ultimately, this makes results more objective, quicker to obtain, and free of many of the biases present in the other methods. Thus, our synapse maps are,  a modern and unique way to visualize and unearth the hooks that appeal to most consumers. By offering a glimpse into the way the brain processes and memorizes information through this aproach, marketing decisions can become more objective. .

The Test:

Image of NEURO FLASH logo displaying Idea Exploration Service regarding which outcome should be pickedNow, suppose we wanted to test how two company names perform against each other in terms of first impression. For the purposes of this example, let’s call the first name “NEURO FLASH” and the second name “Brain Flash.” While conducting marketing research, we would expose the sample of participants to a short concept description, followed by the company name. At that point, we would split the sample into two groups and ask: “What are the first things that come to mind when you read the name [NAME OF BRAND]? Half of the participants would be asked about Brain Flash, while the other half would be asked about NEURO FLASH. Then, based on their responses to the open-ended question, we would make a synapse map for each name.

Results:

Brain Flash:

Synapse Map Example Brain Flash

NEURO FLASH:

Synapse Map Example Neuro FLash

So, what exactly do these synapse maps mean? By separating components of the synapse map, we can look at various global trends, including word frequency and significant differences between the word associations.

Word Frequency

First, let’s take a look at how these names compare in word frequency:

             

Synapse map comparison

Brain Flash (left) NEURO FLASH(right)

Bubble size indicates the frequency of words used in response to the question. The bigger the bubble, the higher the frequency. Line thickness indicates the strength of the association between words. The thicker the line, the stronger the association.

In this example, Brain Flash made participants think of “brain”, “fast”, and “big data.” However, for NEURO FLASH, the most commonly used descriptive words were “neuroscience,” “ideas,” and “behavior.”  NEURO FLASH also elicited a more balanced response than Brain Flash, as shown by less variation in bubble size.

Significant differences

Colors on the synapse map indicate significance (p <.05), according to the legend below:

aaeaaqaaaaaaaaj2aaaajdyzzmzhndvllti5mzmtnguzyy05ymfkltvhnzvhywexyjfkoa

Brain Flash:

aaeaaqaaaaaaaafgaaaajgmxndq3ytczltvhowutnge1ny05yzvhltq0zjzjowu4ytizmw

Brain Flash did not elicit any significantly strong associations aside from the one between “good” and “idea. Noteworthy, however, is that the word “brain” was used most frequently when describing Brain Flash, probably due to exposure in the name itself. Additionally, Brain Flash elicited many significantly weaker associations between “science” and many other words, which goes directly against our intention.

NEURO FLASH

aaeaaqaaaaaaaaijaaaajdllode4n2q2lwizzdctndhjmy05odc2lwm5njjmyme3mdzjma
Here, you can see that the name NEURO FLASH elicits a strong, significant association between “neuroscience” and “behavior”, while it elicits a significantly weaker association between “perception” and “behavior.” Interestingly, these results and findings are representative of our company’s goal: to use implicit methods based on neuroscience to predict behavior (relying less on consumers’ perception to predict behavior). Thus, the name NEURO FLASH fits the company’s identity based on the first impression it elicits as analyzed through our software. NEURO FLASH is, thus, the clear winner.

Conclusion:

As it is clearly seen in the example, the visualization of the data is self-explanatory and provides a straightforward way of conveying the main themes in the responses obtained from open-ended questions. By analyzing a variety of open-ended items in this manner, we are able to reconstruct the thought processes behind each element tested. Critically, adding more open questions can be done with minimal impact on study costs and timing. 

aaeaaqaaaaaaaaksaaaajdlizwy0nmq3lwiyzgitngiyzc1iyzq5lwi1mgjkngm1mdhmyw
Ultimately, seeing words and associations that match the concept and brand vision, leads to better decisions. 

Thus, Synapse Maps are a useful technique for presenting data from open-ended questions. The visual style allows a clear view on the main themes and makes it very easy to understand how ideas are formed and developed in the consumers’ minds. Furthermore, our Synapse Map technology can be applied to all open questions, providing results across a range of key performance indicators (KPIs).

Questions or comments? Easily get in touch by booking an appointment to chat with us.

References:

  • Erickson, P., & Kaplan, C. (2000). Maximizing qualitative responses about smoking in structured interviews. Qualitative Health Research, 10(6), 829-840.
  • Friborg, O., & Rosenvinge, J. H. (2013). A comparison of open-ended and closed questions in the prediction of mental health. Quality & Quantity: International Journal Of Methodology, 47(3), 1397-1411. doi:10.1007/s11135-011-9597-8
  • Huang, Y., Chen, C. H., Wang, I. H. C., & Khoo, L. P. (2014). A product configuration analysis method for emotional design using a personal construct theory. International Journal of Industrial Ergonomics, 44(1), 120-130.
  • Petiot, J. F., & Yannou, B. (2004). Measuring consumer perceptions for a better comprehension, specification and assessment of product semantics. International Journal of Industrial Ergonomics, 33(6), 507-525.
  • Rasoulifar, G., Eckert, C., & Prudhomme, G. (2015). Communicating Consumer Needs in the Design Process of Branded Products. Journal of Mechanical Design, 137(7), 071404.
Jonathan T. Mall

Author Jonathan T. Mall

Jonathan is a computational Neuropsychologist turned entrepreneur. Seduced by the opportunity to optimize consumer experience using machine learning, he led the Science team in a IBM Big Data Venture (gumbolt.com). Afterwards, he founded NEURO-FLASH.com, a market research institute, using online experiments that illuminate the true drivers of desire and purchase behaviour. When he’s not combining Neuroscience and Big-Data to test innovative ideas, he eats burgers and trains for the next marathon.

More posts by Jonathan T. Mall

Join the discussion One Comment

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.